A Fuzzy Compromise Programming Solution for Supplier Selection in Quantity Discounts Situation

نویسندگان

  • Bein Elahi
  • Seyed Mohammad Seyed-Hosseini
  • Ahmad Makui
  • Behin Elahi
چکیده

Supplier selection is naturally a complex multi-objective problem including both quantitative and qualitative factors. This paper deals with this issue from a new view point. A quantity discount situation, which plays a role of motivator for buyer, is considered. Moreover, in order to find a reasonable compromise solution for this problem, at first a multi-objective modeling is presented. Then a proposed fuzzy compromise programming is utilized to determine marginal utility function for each criterion. Also, group decision makers’ preferences have taken into account and the weight of each criterion has been measured by forming pair-wise comparison matrixes. Finally the proposed approach is conducted for a numerical example and its efficacy and efficiency are verified via this section. The results indicate that the proposed method expedites the generation of compromise solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fuzzy Compromise Programming Solution for Supplier Selection in Quantity Discounts Situation

    Supplier selection,   Multi-objective decision making,   Fuzzy Compromise programming,   Supply chain management,   Quantity discount .   Supplier selection is naturally a complex multi-objective problem including both quantitative and qualitative factors. This paper deals with this issue from a new view point. A quantity discount situation, which plays a role of motivator for buyer, is con...

متن کامل

Multi-objective supplier selection and order allocation under quantity discounts with fuzzy goals and fuzzy constraints

Abstract: This paper investigates a multi-objective supplier selection and order allocation problem under quantity discounts in a fuzzy environment. Prior research on supplier selection and order allocation with quantity discounts mainly considered partial fuzziness of the decision problem; a situation where both the objectives of the decision maker and the constraints are fuzzy has not been st...

متن کامل

A Fuzzy Based Mathematical Model for Vendor Selection and Procurement Planning with Multiple Discounts in the Presence of Supply Uncertainty

Supplier selection and material procurement planning are the most important issues in supply chain management. This decision is complicated when the buyers face with discount price schemes. In real situation, each supplier may apply different methods such as different types of discount schedules and various types of payment in order to increase market share. In this situation, buyers try to sel...

متن کامل

A Nadir Compromise Programming for Supplier Selection Problem under Uncertainty

Supplier selection is one of the influential decisions for effectiveness of purchasing and manufacturing policies under competitive conditions of the market. Regarding the fact that decision makers (DMs) consider conflicting criteria for selecting suppliers, multiple-criteria programming is a promising approach to solve the problem. This paper develops a nadir compromise programming (NCP) model...

متن کامل

A fuzzy model for supplier selection in quantity discount environments

Traditionally, supplier selection should simultaneously take into account numerous heterogeneous criteria, and then is a tedious task for the purchasing decision makers. It becomes especially complicated when quantity discounts are considered at the same time. Under such manner, most studies often formulate such a problem as a Multi-Objective Linear Programming (MOLP) problem, and then scale it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011